Mardi 22 septembre 2015

Première année : électricité

Contrôle continu n°1 − 30 mn

Tout document interdit ; calculatrice autorisé

Différence de potentiel entre deux points

Une charge ponctuelle positive q est placée au point O d'un repère R(Oxy).

- 1. On considère les cercles C_1 et C_2 de centre O et de rayons respectifs r_1 et r_2 . Un point M du plan est repéré par ses coordonnées polaires r = OM et $\varphi = (Ox, OM)$ ou par ses coordonnées cartésiennes x et y.
 - a. Le point M se déplace sur le cercle C_1 depuis le point $A_0(r_1, \varphi_0)$ au point $A_1(r_1, \varphi_1)$ avec φ_0 différent de φ_1 . Calculer la circulation du champ E(M) créé par la charge q.
 - b. Même question lorsqu'on se déplace le long du rayon vecteur caractérisé par l'angle φ_0 depuis le point $A_0(r_1, \varphi_0)$ au point $B_0(r_2, \varphi_0)$ situé sur le cercle C_2 .
 - c. Calculer la circulation depuis le point A_0 au point B_1 selon le chemin constitué par le rayon vecteur A_0B_0 et l'arc de cercle B_0B_1 .
- 2. Soit $E_0(M)$ un champ extérieur uniforme dans tout le plan: $E_0 = E_0 e_x$, avec $E_0 > 0$.. Calculer la différence de potentiel V_A V_B entre les points $A(x_A, y_A)$ et $B(x_B, y_B)$ due à l'existence de ce champ. Exprimer V_A V_B en fonction de x_A , y_A , x_B , y_B puis des coordonnées r_A , φ_A et r_B , φ_B des points A et B.